If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9u^2+3u-8=0
a = 9; b = 3; c = -8;
Δ = b2-4ac
Δ = 32-4·9·(-8)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{33}}{2*9}=\frac{-3-3\sqrt{33}}{18} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{33}}{2*9}=\frac{-3+3\sqrt{33}}{18} $
| -4/7a=3/7 | | 40s+2s=42s^2 | | 2x^2=1200 | | -4/7a=7/11 | | (5+3)j=24⋅2 | | 2x+2=7x+2=37 | | -4/7a=-1/4 | | 1/3(6x-9)=11 | | 3x-34=2x+20 | | m+30/5=9 | | n-7/4=-6 | | 3x-23=2x+20 | | 6(2m=+5)=4(2m-3) | | -4/7a=-9/28 | | 1/2(4x-12)=11 | | 5t+3t=2 | | 3x-47=43 | | 31-5+8y-2(y+3)=-3(4y-5)-7(y-1)-9y+10 | | z/8+67=76 | | (y+2)(y−6)=0 | | 5(-6+2r)=5(r-1) | | 2(k-2)=-14 | | 7g+6=90 | | |x-2|=2 | | 1/2x+4=3/4x-9 | | x/2+2=102 | | 6=m/8 | | 2x(x+5)=16 | | (y+2)(y−6)=0(y+2)(y−6)=0 | | 6t^2-17t+7=0 | | 2/7a=8 | | (2x–10)(x+6)=0 |